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We have analyzed several types of acoustical holograms similar to and including
the phase-only hologram suggested by Metherell."! The analyses have involved
three different diffraction regions: the Fraunhofer, Fresnel, and very-near-field.
Each type of hologram studied is characterized by discarding some part of the
information present in the wave scattered by the object and recording the portion
that is left, thus allowing more efficient use of the recording medium. (For exampile,
in the phase-only hologram the phase information in the scattered wave is
retained, but the amplitude information is discarded.) The object investigated in
each case was a long slit, thereby confining the analyses to one dimension.

In the cases involving the Fraunhofer region we assumed that the hologram
was infinitely wide. Mathematically, the reconstructed image of a slit from a
phase-only sideband Fraunhofer hologram of infinite extent is an infinite series
of intense lines of light separated by a distance equal to the width of the slit. The
two central lines can be regarded as defining the slit edges. The light intensity
decreases, but does not drop to zero, between the two central lines. However, it
does drop to zero halfway between all other pairs of the intense lines. The recon-
structed image from an amplitude-only sideband Fraunhofer hologram bears
little resemblance to the slit, although there is some geometric information
present.

In the Fresnel and very-near-field regions the analyses were carried out on
a digital computer. This was necessitated by having to use the Fresnel-Kirchhoff
diffraction integral. Theoretical images were reconstructed for the phase-only.
amplitude-only, and conventional holograms. The results indicated that the
phase-only process introduces some degree of distortion. The higher spatial
frequencies are emphasized and this leads to an exaggeration of edges, corners.
etc. This may prove to be useful for many purposes, such as enhancement of
object outlines. Also, the phase-only hologram has the advantage of eliminating
some of the interfering noise present in the other types of holograms. The ampli-
tude-only holograms seem to have little value in image reconstruction unless the
hologram is recorded very close to the object.

Theoretical analysis showed that if the object beam and a bias signal were
first added together in conventional fashion, but then only the phase were detected.

*This work supported in part by NIH Grant No. 1. ROl GM 16474-01.
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it would be possible to almost duplicate the reconstruction capability of the
conventional hologram. the size of the bias signal determines the degree of
similarity in the two capabilities. This method has the same advantage as the
phase-only process, i.e., only half of the data present must be recorded. and there-
fore the full dynamic range of the recording medium could be used more efficiently.
Reconstruction data obtained from a computer study verified this similarity of
image reconstruction.

INTRODUCTION

We have investigated several types of scanned acoustical holograms charac-
terized by some modification of the signal to be recorded. Each such modified
signal uses either the phase alone or the amplitude alone of the wave scattered
from the object. This type of modification is of interest for its possible
application in computer data processing of the holographic information.
In recording these modified signals the amount of data present is reduced by
about half. This means that the storage requirements and the number of
calculations necessary for processing the data can also be reduced.

Intuitively, we would expect that for some objects this reduction of
data would cause distortion in the image reconstruction. The images,
though distorted, may present enough information about the object (for
example, the object’s outline) to be useful for many purposes. It can be argued
that the most desirable holographic system is one which attains the highest
quality of reconstructed image (according to the user’s criteria) from the
least recorded data. From this point of view it can also be argued that the
information capacity of the recording medium is more effectively used by
some of these types of holograms than by the conventional acoustical holo-
gram. It is important, therefore, to compare the quality of the reconstructed
images from these holograms with that from the conventional hologram.

The various types of holograms considered in this paper are given the
following names: the phase-amplitude hologram (i.e., the conventional
acoustical hologram), the phase-only hologram, the amplitude-only holo-
gram, and the biased phase-only hologram. Block diagrams, to illustrate how
the recorded signals for each are formed, are shown in Figs. 1 and 2. As an
example of one of the types of hologram, consider the phase-only hologram
(originally proposed by Metherell'). For this hologram, as shown in Fig. 1(b),
only the phase of the scattered wave is measured. This phase is imposed upon
a constant-amplitude signal which is then added to an electronic reference
signal and recorded on the medium in the usual fashion of scanned acoustical
holography.

We have studied the distortion which results from these holographic
procedures when some of the available information is deliberately ignored.
We have done this by computing the reconstructions of a simple object, an
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Fig. 1. Block diagrams for the formation of (a) the
conventional phase-amplitude hologram, and (b) the
phase-only hologram.

infinitely long slit, from each of the above types of hologram. By choosing a
long slit, we confine the problem to one dimension. Three different diffraction
distances (between object and recording plane) have been investigated;
one corresponding to Fraunhofer diffraction, one to Fresnel diffraction, and
one to very-near-field diffraction (the latter being where the distance to the
recording plane is smaller than that for Fresnel diffraction). In the Fraunhofer
case we have mathematically considered an infinitely wide sideband holo-
gram (i.e., with an off-axis reference) and have assumed a slit of arbitrary
size. In the Fresnel and very-near-field cases the holographic process was
simulated on an IBM 360 Model 65 computer, and for simplicity the holo-
grams were considered to be of the Gabor type (i.e., with an on-axis reference).
Some of the results for the phase-only hologram were previously reported,?
but are included in this paper for completeness. The object considered in
the computer analysis at the distances in the Fresnel and the very-near-field
regions was a slit whose width was comparable to the width of the figures
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Fig. 2. Block diagrams for the formation of (a) the amplitude-only
hologram, and (b) the biased phase-only hologram.



188 John Powers, John Landry, and Glen Wade

used in experiments performed by Metherell and his colleagues.! The slit
in question was 0.305 m wide and the insonification wavelength was 0.0186 m
(sound in air at 18 kHz). For the Fresnel region the recording plane was
assumed to be 4 m wide and was located on-axis a distance of 15 m from the
object. For the very near-field region the recording plane was considered to
be 2 m wide and located 2 m away from the object.

Because of the different ratios of hologram width to distance, the quality
of the images obtained at the two different distances for any of the hologram
types are not comparable. It is a characteristic of the Gabor hologram that
the spatial frequency generally increases with the distance from the center
of the hologram. The recording of fewer fringes because of the geometry
implies neglect of the higher spatial frequencies that give sharpness to the
edges. This means that our results at the two distances studied on the com-
puter will differ in their basic qualities. Comparison with other types of
holograms at the same distance, however, will yield information about the
relative quality of the image.

PHASE-AMPLITUDE HOLOGRAM
Fraunhofer Region

The first case considered was that of a conventional hologram, where
both the phase and the amplitude of the scattered wave are recorded and used
in the reconstruction. Since both phase and amplitude would be measured
‘and stored in a computer, there is no reduction in data for this case. It does,
however, provide a basis of comparison for the images from the other
methods.

Consider first a single slit in the analytically simple Fraunhofer region.
Assume that the slit is of width 2a and is placed in a simple holographic
system as shown in Fig. 3. We will examine the conventional hologram and
its reconstructed real image and then do the same for the other types of
holograms. Inspection of the images will illustrate the differences in the
various Lypes.

If the distance of the recording medium from the object is great enough
so that the diffraction pattern is in the Fraunhofer region, and an off-axis
reference beam is used, the recorded hologram is of the sideband Fraunhofer
type. Under these circumstances the complex amplitude distribution for the
object beam at the holographic plane is given by

Ug 4(xy, z5) €77 = Up(x,) exp[ +jd(x,)] e ~/**

={ exp(jkz,)

, k i
W[F{Object}]f,muzh}eXp[ﬂz—ZhXi] e (1)
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Fig. 3. General recording arrangement for holograms.

where

[F{ObjeCt}]fx=xm’»'.:h
is the spatial Fourier transform of the object with the spatial frequency
evaluated at x,/Az,, and x, is the distance in the x direction measured at the -

hologram plane.
For the single slit the complex amplitude distribution is

ik in[2 A k
R oL N U P

From this expression it is now easy to identify the amplitude function
Uy(x,) and the phase function ¢(x,); the factor

exp(jkz,) 5 sin[27(x,/Az,)]a]
[jdz,]'? 2n(xy/Azp)a '

being the amplitude function and
(K22zp)xt + f(xy)

the phase function, where f(x,) has the value 0 (+2nn, n an integer) wherever
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the function
sin[2n(x,/Az,)]a
2n(x,a/iz,)

is positive, and the value n (+ 2nn) wherever that function is negative.

For a general hologram the complex wave distribution is added to an
off-axis wave represented by U, exp(+jSkx,) to form the hologram. Here
U, is a complex constant of position and S is a short-hand notation for the
sine of the angle which the reference beam makes with the z axis. The in-
tensity pattern due to the above light is recorded on photographic film and a
positive transparency is made. The transmission function of the transparency
is proportional to the intensity pattern (for a y = —2 film): hence, we have

t = KI = }KUU* = 3K[U,U} + Up(x,)U3(x,)
+ U, Ug(xy) exp{ +j[Skxy — ¢(x,)]}
+ UrUo(x,) exp{ —j{Skx, — ¢(x,)]}] 3)

The reconstruction is performed by illuminating the developed holo-
gram with a planar beam of laser light which is antiparallel to the original
reference beam (i.e., by the conjugate of the reference beam). This technique
will give a real image which is on-axis and located at the precise original
position of the actual object. The beam which then emerges from the holo-
gram is given as follows:

U.,(xy, z,) = tU¥ exp(—jSkx,)
= $K[U,U*U¥ exp(—jSkx,)
+ Uo(xp)U(x4)U¥ exp(— jSkx,)
+ U, UrUG(x,) exp[ —j(x4)]
+ UrUrUo(xy) exp{ —j[2Skx), — ¢(x4)]}] 4

Holographic theory provides the interpretation of these terms.® The first
term corresponds to a replica of the reference beam making an angle 6 with
the axis. The second term represents noise. Because of its dependence on the
amplitude function of the scattered wave, we call it the “‘amplitude noise”
term. The third term is the one that gives the real image. As described above,
this term is on-axis. The fourth term represents the virtual image. It is
found at an angle 20 off the axis.

Focusing attention on the third term, we realize that if we go a distance
— z,, along the z axis from the hologram, we should reproduce a real image of
the original object at the origin. Since z, is large enough to be in the Fraun-
hofer region, we can find the complex amplitude distribution function at the
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image plane by using the Fraunhofer diffraction equation again. Thus, for the
slit

[ ] ]

® sin(2nx,/Az,)a kex? X,
X f ——— " exp| —j= | exp| —j2n ~—x | dx,
o 2z Az,

Xy h

_[KOUE [ Tk
R P

f‘” | sin(2mx,/Az,)a
X j——

! X}

X exp{—jt% + f(x,,)J — j27r(xh/iz,,)x} dx, 5)
Zh

where f(x,) is the phase function previously described.
By invoking the Fraunhofer approximation (i.e., the same approximation
which allowed the use of the above integral),

(k2z,)x} « 1, (k2z)x* « 1

we then obtain
=1 x| < a
Uix,0) = %KU,U;“{ (6)
=0 [x| > a
where the approximation sign reflects the fact that we have applied the Fraun-
hofer approximation.

This expression for the conventional hologram reconstruction is
precisely what we would expect to get by inspecting the third term of Eq. (4).
Since that term is a constant times the conjugate of the original object beam,
it represents a family of rays having exactly the same ray paths as the original
object beam, but with the rays following those paths in the opposite direction.
Thus, from Eq. (4) we expect a reconstruction of the original object beam at
the object plane.

Hence, the conventional system theoretically gives distortionless image
reconstruction of the original object from an infinite sideband Fraunhofer
hologram.

Fresnel and Very-Near-Field Regions
For the Gabor hologram used in the computer study the representation
of the film transmittance is given by

t = $KUU* = 3K{U, U} + Ug(xy)U§(x,)
+ U, Ug(x,) exp[ —jé(x,)] + U Uo(x,) exp[+jd(x)];  (7)
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[Note that this is the same as Eq. (3) except that the reference beam is on axis
and therefore S = 0.]

The emerging-beam representation is given by an equation similar to
Eq. 4):

U.lxy, 2) = Uy
= 2K{U,UU + Us(xp)Uo(x,)U}
+ UUPUG(xy) exp[ — jé(x,)] + UFUFUo(xy) expl +jd(x,)]}  (8)

Just as in Eq, (4), the first term is a replica of the reference beam, the second
represents the noise which we call “amplitude noise,” the third gives the real
image of the object, and the fourth gives the virtual image.

For a Gabor hologram we note that all terms represent on-axis beam
components. This implies that the resulting images will not be spatially
separated automatically as in the sideband type of hologram, but that some
special means must be used to separate the images. It is possible to use
spatial filtering to eliminate the reference beam replica and the virtual image.
For computational purposes, therefore, we eliminate these terms mathe-
matically by representing the emerging beam at the hologram plane as

Uelxn, 24) = Uo(xp)Ug(xp)UF + UFU,Ug(x,) exp[ —jd(x;)] ©)

where the reconstruction reference beam U* has been assumed to be anti-
parallel to the original reference. Here the emerging beam has terms rep-
resenting the “amplitude noise”” and the real image only. Dividing Eq. (9)
by the scaling factor UU, and disregarding the overall scale change, we
get the emerging-wave representation :

Uelxh, 2) = (Uo(xn)US(x4)/U,] + Ug(x,) exp(— jo(xy)] (10)

Since our interest was only in the resulting image, Eq. (10) was the logical
starting point for the computer calculations. As written, it applies to the
phase-amplitude (conventional) hologram, but we can easily modify the
equation so that it represents the emerging beam for any of the hologram
types being studied. Thus, we can write

Uelxn, 24) = [Uop(x)Ug(xn)/U,] + Ug*(xy) exp[ —jop'(x)) (11)

where Up(x,) and exp[,j¢'(x,)] represent the complex wavefront after the
required modifications have been imposed to effect the desired type of
hologram. The specific modifications for each type will be discussed below.

To use Eq. (10), it was necessary first to calculate Uqy(x,) exp[ +jp(x,)]
by applying the Fresnel-Kirchhoff integral to the propagation of the scattered
wave from the slit to the hologram plane. This scattered-wave representation
(that is, Uyx,, z,) in Egs. (10) and (11)] was then put into the Fresnel-
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Kirchhoffintegral and the complex wave function was computed for propaga-
tion to the image plane (a distance equal to that between the object and the
hologram plane). The intensity of the image was then calculated and dis-
played graphically.

The computational procedure was tested by computing images from
phase-amplitude (conventional) holograms at the two distances of interest.
Following the usual assumption for Gabor holograms. we assume that the
reference-beam magnitude is very much greater than the magnitude of the
scattered wave. With this assumption the “amplitude noise” term of Eqgs.
(10) and (11) is negligible compared to the scattered wave. Obtaining the
image intensity distribution requires substituting Uj(x,, z,) into the Fresnel-
Kirchhoff integral. Note from Eq. (10) that Uj(x,, z,) is the same as the com-
plex conjugate of the previously calculated object wave function
Uygl(xy) expljd(x,)]. The images obtained at the two distances are shown in
Figs. 4(a) and 3(a).

As previously mentioned, the images differ in the number of higher
spatial frequencies included in the reconstruction. This constitutes a type of
spatial filtering due to the finite size of the recording medium. In spite of
this spatial filtering, it is seen that the reconstructions of the slit are quite
accurate in the positioning of the edges and in the representation of the
intensity across the slit.

PHASE-ONLY HOLOGRAM

Fraunhofer Region

Examining now the case of the phase-only hologram, we proceed as
before with the Fraunhofer diffraction integral except that we use only the
phase information in the original object beam and not the amplitude in-
formation. We thus replace Uy(x,) in the original expression, Eq. (2), with
a constant U,. Constructing our image as in Eq. (5), we now have

expl + jkz,) exp[ + j(k/2z,)x?*] KU, U¥
[jizp)'? 2

® k
X J Uf exp {—j[i—z—xff + f(x,,)}}exp[—ﬂn{f—x] dx, (12)
— h h

Upon factoring the constant U§ out of the expression involving the
Fraunhofer approximation and evaluating the Fourier transform of
exp[ —jf (x4)], shown in Fig. 6, we find the result (to within a complex multi-
plicative constant C):

Uix,0) =

C exp( + jkz,) KU, U¥ tan(nx/2a)
[jiz, )2 2 nx/2a

U,‘(x, 0) = (13)
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Fig. 6. Graphical representation of the emerging real image term at the
hologram plane.

Taking the magnitude squared of this quantity, we obtain the image intensity
distribution of Fig. 7.

Here we note that the slit-image reconstruction is an infinite set of
intense lines running in the slit direction and located a distance 2a apart
(i.e., the width of the slit). This repetition of lines is the result of the grating-
like structure of the hologram. Since the structure is not strictly periodic, the
center of the reconstruction is uniquely located by the nonzero intensity
along the center axis half way between the two central lines. These two
central lines can be regarded as defining the slit edges in the image. The
widths of the other lines decrease with increasing distance away from the
central axis. Hence, for this phase-only hologram the reconstructed image

INTENSITY

-6a -4q -2a 0 2a 4a 6a

Fig. 7. Reconstructed image intensity distribution from
a Fraunhofer phase-only hologram.
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of the slit appears with accentuated edges and with an infinite number of
periodically distributed lines of light located on both sides of the slit image.

Fresnel and Very-Near-Field Regions

For the case of the phase-only hologram the output of the constant-
amplitude oscillator (as shown in Fig. 1b) is assumed to be exp(j¢(x,)] (ie.,
the amplitude is constant at unity). Hence, for this case the emerging-wave
representation of Eq. (11) becomes

Ulxy, 2) = (1/U)) + H{exp[—jolxy)]} (14

It can be noted that the “‘amplitude-noise” term of Eq. (11} is now constant.
This implies that this noise term would be totally removed by the spatial
filter in the same fashion as the replica of the reference beam. The removal of
the “‘amplitude-noise™ term by spatial filtering represents an advantage over
the phase-amplitude (conventional) hologram. With the phase-amplitude
hologram we must make the magnitude of the reference beam large to be
able to neglect the noise term, since only then would it tend to vanish [see
Eq. (10)]. The assumption of large reference beams is not necessary in the
phase-only case, thus allowing more generality.

Taking the complex conjugate of the scattered wave function, dividing
by its magnitude to normalize the quantity, and putting that into the Fresnel-
Kirchhoff integral gives the intensity patterns of Figs. 4(b) and 5(b). Note

“that the positions of the edges of the slit are slightly misplaced and the
intensity across the slit is misrepresented. The edges of the slit are accentuated

Fig 8. Experimental results from a
phase-only hologram showing en-
hancement of higher spatial frequen-
cies. (Photo courtesy of A. F. Metherell,
Douglas Advanced Research Labora-
tories.)
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by the ““piling up” of light at their positions. This confirms a distortion seen
in photographs (Fig. 8) of reconstructed images made by Metherell and
Spinak,* which show the edges of a board as being brightly outlined.

AMPLITUDE-ONLY HOLOGRAM
Fraunhofer Region

In the amplitude-only hologram only amplitude information in the
acoustic field is recorded on the medium. Such a hologram can be made
experimentally by using an amplitude detector and a constant-phase
oscillator as in Fig. 2(a). The use of a square-law (intensity) acoustical
sensor would accomplish the same purpose. In fact, the approach is really
like holography without a reference beam, although a reference beam was
included in our analysis for completeness.

To analyze the Fraunhofer case, we can use the same equations that
we developed earlier, with some modifications. In the present case the phase
term of Eq. (5) becomes constant, so that we have, for the diffraction equation
for the image

KU, Uy Ck
U(x,0) = |: 2’ ]exp[+1§;x2:|
h

) J.w isin(anﬁizh)aiexp(_j¢o) exp[—j2n

—-oo‘ “vh i

ﬁ)x} dx, (15

AZy
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Fig. 9. Reconstructed image intensity distribution
from a Fraunhofer amplitude-only hologram.
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Performing the indicated transform and finding the magnitude squared, we
obtain the intensity distribution of Fig. 9. While some geometric information
is present here, the reconstructed image is not of much value in representing
the object.

Fresnel and Very-Near-Field Regions

As we have seen, the amplitude-only hologram holds little promise in
_ the Fraunhofer case. It is instrictive to consider it in the Fresnel and very-
near-field regions also. For this case the modified version of Eq. (11) becomes

Ui(xy, 2) = [Up(xp)U§(xn)/U,] + Ug(x,) (16)

When substituted into the Fresnel-Kirchhoff integral the computed
images are as displayed in Figs. 4(c) and 5(c). Obviously, as in the Fraunhofer
case, image distortion in general is quite high.

However, for the very-near-field case, the image can be quite good. We
note from Eq. (16) that when the reference beam is large the emerging wave
is approximately the amplitude of the diffracted object wave. For the limiting
case in which the hologram is recorded at z, = 0 the diffraction amplitude
is just the geometric shadow of the slit. The reconstruction {which is trivial
in this case) is then a perfect image of the slit. As the recording distance
becomes larger and larger, the diffraction pattern becomes less and less well
approximated by the geometric shadow, and eventually the pattern no
longer resembles the object. Thus, in the very-near-field we would expect the
image to look less and less like that of a slit as we move the recording plane
away from the object. In Fig. 4(c) we note that the image obtained resembles
the slit, although a deterioration of quality has already set in.

BIASED PHASE-ONLY HOLOGRAM

Theory

As we have seen, the phase-only hologram achieves a decrease in the
“amplitude noise’’ and at the same time gives the advantage of data reduction.
One other modification which also does this involves adding a bias term to
the signal and then taking the phase of the sum as demonstrated in block
diagram form in Fig. 2(b). If the waveform at the receiver is given by
Uyl(x,) expljo(x,)], the signal after the addition of an out-of-phase bias
signal is

U’ = U, exp(jdo) + Uolx,) exp[jd(x4)]
= Uppe + jUp, + Ugge(xn) + jUo,.(x4) (17)
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where Uy, Uoge(xs) and U,,_, Uy, (x,) are the real and imaginary parts
of the bias and scattered wave. The process of physically detecting the phase
of this signal and then producing a unit-amplitude signal that follows this
phase can be represented mathematically by the normalization of the input
of the phase-detector block of Fig. 2(b). The amplitude of this input from
Eq. (17)is

Ul = {{(Ubge + Uogelxw)® + [Us,,, + U, (xa)]*}'72 (18)
and the normalized waveform which will be recorded at the output is given by

U, exp(jds) U
explj0(x,)] = = el’;Jp,(I’ Po) , ﬁﬁ‘,“) explj(xy)] (19)

where 0(x,) is the phase angle for the signal consisting of the sum of the bias
and the object signals. From this equation it may be seen that if |U’| (which,
in general, will vary across the recording plane) could be made to be a
constant, then we would have both a replica of a reference beam and of the
object beam. Investigating |U’}], we note from Eq. (18) that, if the bias term
is made very much larger than both the real and imaginary parts of the
object beam, then the value of |U’| is approximately a constant, and we have
our desired waveform. Under this condition |U’'| =~ U,, and we see that we
may write Eq. (19) as

U xplJjd(:
expl 0] = [expljigo)] + 22 72/ 0

We note that all of the information of the scattered wave is contained in the

phase angle 6(x,).
If a reference signal is then added to the unit-amplitude signal and re-
corded, the film transmission is

K
= —2—]U, + exp[jO(xy)]I

K
= 3{ U? + 1 + U, exp[+,6(xy)] + U, exp[—;6(x,)]}

U, U, expljdo) LU Uy (x,) exp[jd(x,)]

— K 2
=Koy o g

U, U, exp(—jdo) Ug(x,) .
U =ib0) 14, B0 engr st

Kf{ , 20,0,
S — 1
2{U + — T cos¢>0

10F
+ U 1(2 lh)eXP[J¢(xn)] + U, |L5|h) CXP[—M)(X")]} 2y
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Here the “amplitude-noise™ term is decomposed into two parts; one a
constant that would be removed by the spatial filter, and the other a term
that is approximately a constant across the hologram. Neglecting the
reference-beam term and the virtual-image term but including the second
of the amplitude-noise terms, the emerging wave becomes, upon recon-
struction with a beam of magnitude U, !

’ 2U, Ug(xy)
Ulx, 24) 7 cos ¢o + 0]

Note that the value of ¢, exerts some control over the size of the effect
from the amplitude noise. Assuming that the form of the scattered wave is
unknown, it is best to let ¢, be approximately 45° to allow the value of 8 to
have the maximum range.

Equation (22) is very similar to Eq. (10) for the phase-amplitude holo-
gram. The degree of similarity is determined by how close the quantity |U’|
comes to being a constant. Since the equations are so similar, we would
expect the images to be of very nearly the same quality. This is true even
though the image from the biased phase-only hologram is derived solely
from the phase angle 8(x,) and all the amplitude information is discarded.

exp[ —jo(x)] (22)

Fraunhofer Reaion

For the reconstruction of the real image in the Fraunhofer region only,
the complex conjugate of the last term of Eq. (19),

[(Uolxa)/IU"| exp[ +je(x)]

would be put into the Fraunhofer diffraction integral. Here Ug(x,) and ¢(x,)
are the very same amplitude and phase functions displayed in Eq. (2). To
the degree that |U’| approximates a constant, the image obtained by the
biased phase-only hologram is an exact duplicate of the image obtained
from the phase-amplitude (conventional) hologram, differing only by an
amplitude scale factor.

Fresnel and Very-Near-Field Regions

By using Eq. (22) in the Fresnel-Kirchhoff integral and assuming the
bias signal to be ten times the maximum value of Uy(x,), the curves of Figs.
4(d) and S(d) were obtained. As expected, the results arc very similar to thuse
for the phase-amplitude (conventional) hologram. However, some light is
present outside of the region of the slit image ; also, the edges are less sharply
defined. This can be attributed to the variation of amplitude {U'} which, in
this case, was not a precise constant across the entire hologram plane.



Phase-Only and Amplitude-Only Holograms 201

Although the image is excellent, there are disadvantages in the proposed
system which would show up in practice. Since the bhias term is larger than
the received signal, the measured values of the phase angle 6(x,) would be
small. The phase detector would have to be able to follow the changes in
this angle, however, since these minute changes would contain all of the
object information. Hence, the noise of the process must be low.

SUMMARY

It is apparent that real savings in the collection and processing of
acoustical holographic data may be made possible by modifying the received
signal. As intuitively expected, there are advantages and disadvantages
relating to the quality of the reconstructed image for each method. Although
our study covered only three possible methods of data reduction for a
specific simple object, some general conclusions may nevertheless be
drawn.

Because of the simplicity of the Fraunhofer diffraction equation, it is
sometimes possible to use Fourier-transform theory to predict the quality
of the image from each method for some simple objects (that is, the class of
objects whose transforms and inverse transforms may either be found in
tables or be calculated).

In the case of the slit, the phase-only hologram proved to contain more
geometric information than the amplitude-only hologram, although the
phase-only reconstruction was not perfect. The biased phase-only hologram
can provide an alternative by using information from both the phase and
amplitude while retaining the advantage of requiring only half the data that
is contained in the conventional phase-amplitude hologram.

In the Fresnel region and in the very-near-field region the complexity
of the Fresnel-Kirchhoff diffraction integral makes it difficult to readily draw
such general conclusions. However, a digital computer can be used to
calculate the quality of the reconstructions from the standpoint of an
arbitrary set of criteria. The biased phase-only hologram theoretically
reconstructs a good image, but may be difficult to physically implement
because of the small size of the phase angle which must be measured. As
explained in the text, the amplitude-only hologram does not image well
unless the recording distance is so short that the recorded pattern approxi-
mates to a substantial degree the silhouette (or transmission function) of
the object. Phase-only holograms, although giving some distortion, may
present sufficient information about the object to be highly useful for many
purposes. Many types of objects have, in fact, been experimentally recon-
structed with little apparent distortion.*
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