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ABSTRACT

Computer-aided acoustical imaging systems and computer simula-
tions of other acoustic imaging techniques frequently require simu-
lation of linear acoustic diffraction of large complex-valued data
arrays. Computation efficiency requires the use of fast Fourier
transform techniques. This paper compares two Fourier transform
formulations of the propagation problem: the Fresnel integral and
the spatial frequency domain approach. The following features are
compared: Trestrictions on maximum and minimum propagation distances,
sample sizes and number of samples required, adaptability to image
processing techniques, and computational requirements.

INTRODUCTIOCN

The use of computers in computer-aided acoustic imaging has be-
come increasingly popular in recent years. The use of the computer
in obtaining images by such techniques as backward wave propagation{
offers such advantages as the elimination of the reconstruction wave-
length scaling problem? obtained with optical reconstruction tech-
niques, reference-free holography that uses the linear detection
properties of piezoclectric transducers, and the possibility of in-
corporating image enhancement to improve the image obtained. Addi-
tionally computer simulation of the holographic process has been a
useful tool in studying such novel techniques as phase-only holo-
grams3 and kinoforms#. In most computer-aided imaging techniques it
is necessary to mathematically simulate the scalar wave diffraction
process. This paper compares two techniques for this simulation,
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describing their features and some of their advantages and disadvan-
tages.

In representing the acoustic diffraction formulations we will
implicitly assume that the propagation medium is linear and homoge-
neous. We also will require that the resulting diffraction inte-
grals must be amenable to computer solution in a reasonable amount
of time which at the present infers that the integrals must be in
the form of Fourier transforms so that the speed and efficiency of
the Fast Fourier Transform® (FFT) can be brought to bear on the
problem. The general problem then is: given a complex scalar wave
gi(xi, yi, 0) at some input plane, find an expression for the wave
Uy (x0, yo; 2z) at some parallel output plane a distance z away,subject
to the wave equations. Two forms of the solution incorporate the
Fourier transform and will be considered after a short review of the
features of the analog Fourier transform and the discrete Fourier
transform (DFT).

The two dimensional analog Fourier transform is defined by the
relationships

Ux,y) = £F A T Y gudy =2 A v} 0

-j 2 (ux+vy)

A(u,v) = ff U(x,y)e dxdy =F{u(x,y)} (2)
where U(x,y) is the complex function in the space domain; A(u,v)
is the complex transform in the spatial frequency domain;

u,v are spatial frequencies (dimensions of cycles/meter); and
,3 1 are symbolic operators for the transform and in-

verse transform operations respectively.

The discrete version of the Fourier transform (assuming an equal
number of samples and sample spacing in both dimensions) is given by
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where o< m,n< N-1;
o< k,f_i N-1;
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£ (ma,na) is a complex valued sequence of samples in the
space domain;

A(kQ,€59) is a complex valued sequence of samples in the
spatial frequency domain;

N is the total number of samples in one dimension in the
space or frequency domain (N x N total sample values);

a is the sample spacing in the space domain;

@ is the sample spacing in the spatial frequency domain
(and is equal to 1/Na);

F,F"lAare symbolic operators for the discrete Fourier
transform and the inverse transform operation respec-
tively.

The fast Fourier transform (FFT) is an efficient algorithm that uses
symmetry properties to compute this discrete transform. The effi-
ciency of this algorithm for large N(>8) makes it the only practical
method of processing large two-dimensional complex valued data ar-
rays, as is required in computer-aided acoustic imaging. Several
properties of the DFT are mentioned here as they have important re-
percussions later.

1. As mentioned above, if the sample size in the space domain
is a, then the sample size in the spatial frequency domain
is 1/Na where N is total number of samples in one dimension.

2. There are N x N samples in the space domain covering a
region Na x Na; there are also N x N samples in the fre-
quency domain covering a region 1/a x 1/a.

3. The DFT assumes that the input sequence is periodic in both
the x and y dimensions. Hence the input is considered an
infinite two-dimensional periodic array (with period Na).
Similarly the inverse DFT requires that the sequence in the
spatial frequency domain also be periodic in both dimen-
sions (with a period of 1/a).

4. The scaling factor of 1/N? in the inverse transform should
be noted to ensure computational accuracy.

5. The wave fields in diffraction patterns are usually centered
on the propagation axis (as in Fig la) to take full advan-
tage of symmetry. The usual DFT algorithm however usually
works on a wave-field that lies in the first quadrant and
produces the spectrum also in the first quadrant with the
(0,0) frequency component at the origin (as in Fig. 1b). In
order to apply the usual DFT to the centered wave without
getting a linear phase shift in the transform domain that
accompanies simple translation, a data shuffle 10 can be
used. Based on the assumed periodicity of the input wave
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Figure 1 a) Geometric arrangement of input data and transform
required by most discrete Fourier transform algorithms

b) Geometrical arrangement of input data and transform
desired for diffraction problems. (Quadrant numbers
and data location marking refer to data shuffle de-

scribed in text.)
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and the resulting symmetry, this shuffle applied both be-
fore and after taking any transform or inverse transform
allows one to work with waves that are centered on the
axis and FFT routines that work only in the first quadrant
The shuffle routine exchanges the data in quadrants II and
IV (see Fig 1b) and the data in quadrants I and III. (The
alignment of the shuffle is indicated by the fact that the
data of position X in quadrant II of Fig 1b is exchanged
with the data of position x in quadrant IV. Similarly the
data of the positions marked by the o's of quadrants I and
III are also exchanged. Since this data shuffle is a mere
exchange of data locations, the additional computation time
is minimal except for the largest of arrays.

THE FRESNEL INTEGRAL

The first form of the solution of the propagation problem that
incorporates the Fourier transform representation is the Fresnel
integralé. Using the notation of the discrete Fourier transform
this expression is: ) ) »
JHE gom [(kaxo) 2+ (Layo) 2]
Uy (kdxq ,LAy0) = = e

jAz
LT 2 2
+# dus (na,naye IR [y 2 (na) 4 (5)
kQ = kAXxo
20 = 4%,

where Uj(ma,na) is the sampled input function (sample spacing
=a);

z is the propagation distance;

Axo, Ayo are sample spacings of the output wave and are each
equal to Az/Na;

Uy (kbxg,28y,) is the sampled value of the output wave at the
plane a distance z from the plane of the input wave.

This expression for U (kaAxo,fAyo) is valid only for propagation dis-
tances such that

z23>>7N%(axo - a)*]16A (6)

The important properties of this formulation of the diffraction in-
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tegrals are noted below.

1.

There is a limitation on the minimum propagation distance
due to the inequality of Eq.6. There is no limitation on
the maximum propagation distance; in fact the Fresnel inte-
gral becomes the much easier to solve Fraunhofer diffraction
integral6 at very large propagation distances.

The sample spacing of the output becomes larger with in-
creasing propagation distance since Axo = Az /Na. This is
helpful for diverging waves since the sample spacing spreads
at the same rate as the diverging wave ensuring complete
coverage of the diverging beam with a minimum number of
sample points.

The diffraction operation requires N2 complex multiplica-
tions, one data shuffle, one FFT operation, another data
shuffle, and another N complex multiplications.

The required sample spacing is determined by frequency
aliasing considerations’. Since the exact derivation of
the number of samples depends on the object, we choose a
representative one-dimensional object, a slit of width 2a,
and find an estimate of the sample number as a rough guide-
line. The object is a slit of width 2a in a region 2W wide
(see Fig 2a); the transform of this object is 2a since 2au
(see Fig 2b). The spacing in the frequency domain will be
Au = 1/2W and, if there are N samples, the maximum fre-
quency will be

Umax = N Au = l (7)
2 4w

The energy contained in the frequencies above Umax will be aliased
back into the frequencies below Umax. The fraction, e, of the total
energy that is aliased is

e=1 /7 |a@|%u = 21 (8)
2 Umax T2Na
and hence the sample width is
Ax = 2W = n2ae (9)
N
and the number of samples is
N= 2W (10)
TZae

Typically € ~ 5% or 10% is used. Hence the amount of aliasing tol-
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U= A(u)
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Figure 2 a) Hypothetical one dimensional object (a slit)
b) Transform of object

erated determines the sample spacing and the number of samples. As
indicated previously this result is based on a particular input ob-
ject (i.e. a slit). Objects with smaller scale discontinuities or
perturbations might require finer sample spacing while objects with
more gradual discontinuities can be analyzed with coarser sampling.
However the results of Eqs. 9 and 10 give approximate values for
sample spacing and total number of samples.

SPATIAL FREQUENCY DOMAIN APPROACH

The spatial frequency domain solution® to the diffraction pro-
blem relates the transform of the output wave to the transform of the
input wave by a simple complex multiplication:

j2nzf .
Ao(k,£2;52) = A;(ka,402;0)e TJI'WQ)Z‘W‘Q)Z (11)

Realizin% that the square root expression is imaginary for (k)2 +
(£2)2 > 1/X2 and that the contribution from these terms (the '‘evanes-
cent waves'") will be negligible if the propagation distance is more
than several wavelengths we can simplify this expression to

JEE 1 - (k@) 2- (M) 2

A - (kQ,L80252) = Ai(kQ,EQ;o)e

when (ko) 2+(£0)2< %z (12)

hen (kp)2+(£0)2> 1
when (k@) <+(£Q) z'iz
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where

A, (kQ, £a; o) = F {U;(ma,na)};
Ao(ka, £2; z) = F {Uo(ma,na)};

i

a is the spatial sample spacing;
Q is the frequency domain sample spacing (equals 1/Na).

The properties of this frequency domain appraoch are as follows:

1. The sample spacing in the output plane is the same as
that of the input wave x (Axo = Axj = a). For a diverging wave we
would need many more samples in the output plane to adequately
describe the wave because of its larger size, so we must either have
numerous zero valued samples at the input plane to adequately cover
the output wave or we must restrict our coverage of the output wave
to only a small portion of its breadth. Fortunatel; a remedy has
been found to this dilemma by Sziklas and Siegman. ‘Reference 7 pre-
sents a wave transformation that converts a diverging wave diffraction
problem into a collimated wave problem. The collimated wave problem
is adequately handled in the frequency domain approach by the coordi-
nate systems having equal spacings in the input and output planes.
The solution to the collimated beam problem may then be used to
easily find the solution to the diverging beam problem. The net ef-
fect is to obtain an effective output plane sample spacing that ex-
pands with propagation distance so that a conservative number of
sample points can adequately describe both the input wave and the
output wave.

2. Because the DFT assumes that the input wave samples are
repeated in a periodic two-dimensional array, at some propagation
distance L, the waves from the other 'objects'" will overlap the wave
from the original object, thereby limiting the maximum propagation
distance for which the frequency domain approach can be used. Figure
3 and the following analysis uses the one-dimensional slit as an ex-
ample of this effect and an estimate of the maximum propagation dis-
tance. Using an approximation %o the Fresnel integral for this speci-
fic object, Sziklas and Siegman’ show that allowing e;% of the total
wave energy in the overlapping fields at a propagation distance L re-
quires a guard band or region of zero valued samples (as in Fig.3) of
value

G >1 + L (13)
f?zéel
This equation can also be used to find the maximum propagation dis-
tance L, given an object with a certain guard band value G and an
allowed amount of energy overlap (e.g. 5%). Again this result is
based on the slit object and would have to be increased for objects
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Figure 3 Hypothetical one dimensional slit object and its
nearest periodic neighbors. At distance L the
diffracted wavefronts are significantly over-
lapped.
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with smaller features that would have to be resolved or decreased
for objects with more tapered features than a slit.

3. It is noted from Eq.12 that the output frequency spec-
trum is band-limited i.e. all frequency samples lying outside of a
circle in the frequency domain with a radius of 1/X are equal to
zero (for propagation distances longer than several wavelengths).
Hence only those samples of the input wave spectrum that lie within
this same circle must be taken. This leads to a determination of
the optimum spatial sample spacing and the fact that there is no
frequency aliasing in the spatial frequency approach to the dif-
fraction problem. Rather than restricting our frequency samples to
those lying within the circle of radius 1/A it is geometrically
simpler to consider those lying in the rectangle |u|<1/x and |v]|<1/x
(as in Fig 4). This leads to an oversampling by 12% of the absolute
minimum number of samples.

Choosing this sampling limit gives a maximum frequency in the
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N = 2Ga = 4Ga (18)

AX A

It should be noted that many FFT routines require that the number of
samples be an integral power of 2. Hence the final value of N may
be that power of two above or below the calculated value of Eq. 18.
If larger the field will be oversampled (with a resulting loss of
computing efficiency and longer running times) or undersampled (with
shorter running time but a loss of some resolution).

5. Another property of working in the frequency domain to
handle the diffraction problem is that this approach is easily ame-
nable to frequency domain image processing techniquesssuch as Weiner
filtering, edge enhancement, deconvolution of the point spread func-
tion of the receiver, etc.). Here the spectrum of the diffracted
wave can be manipulated by multiplication with a filter function:

Ao(u,v) = Ai(u,v) H prop(u,v) H filter(u,v) (19)
where

Aé(u,v) is the spectrum of the processed output wave;

H prop(u,v) = Ac(u,Vv)|Ai(u,v) is the "transfer function” for

~  linear scalar diffraction and is found by dividing Eg.12
by Ai(u,v);

H filter(u,v) is the filter function to perform the desired
operation.

Since one of the primary advantages of computer-aided imaging is the
flexibility and capability to enhance the image and extract infor-
mation, the ease of incorporating this class of frequency domain op-
erations is a major advantage of the frequency domain approach.

SUMMARY

Table I summarizes the relative advantages and disadvantages of
the two diffraction approaches. With an awareness of these strengths
and weaknesses the researcher attempting computer-aided imaging will
be able to choose the technique most suitable for his application.
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v

1/x

Figure 4 Frequency domain representation of bandlimited
propagation showing circular limit (radius
equals 1/A). Circumscribed rectangle shows
geometrically simpler bandlimiting (with 12%
oversampling).

U direction of

Uy = NaU =1
oomx 3 X (14)
where Au is the spatial frequency sample spacing. Hence,
Au = 2
BN (15)
and is also given by
Au= 1 (16)
N Ax

where Ax is the spatial sample spacing. Therefore
Ax = A (17)

is the optimum sample spacing of the object. It is noted that this
sample spacing is that required to give resolution of A/2, the "dif-
fraction limited" resolution.

4. Knowing the required quard band size and the optimum
sample spacing from properties 2 and 3 above it is now possible to
compute the total number of samples by dividing the total object
width (including the guard band) by the optimum spacing:
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TABLE I Summary of comparison between diffraction techniques

FRESNEL INTEGRAL FREQUENCY DOMAIN APPROACH

1. Expanding sample spacing. for |l. Expanding sample spacing can
diverging wave. be made to occur by wave

transformation.

2. Limited minimum diffraction 2. Unlimited minimum diffraction
distance. distance.

3. Unlimited maximum diffraction |3. Requires large guard band (and
distance. more samples) for longer dif-

fraction distances.

4. Does not predict diffraction |4. Correctly predicts diffraction
limited diffraction. limited resolution.

5. Some frequency aliasing. 5. No frequency aliasing due to

bandlimited nature.

5. Image processing is separate 6. Frequency domain filtering
operation. techniques are easily in-

corporated.

7. Requires two N2complex mul- 7. Requires N2 multiplicationms,
tiplications, two data shuf- four data shuffles, and two
fles, and one FFT operation. FFT operationms.
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