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Abstract

A method based on the time extonsion of the angu-
lar spectrum theory of diffraction is presented
for computing the transient field radiated from a
carved surface (or a plane surface having oither a
time—delay excitation ox, equivalently, an acous-
tic lens in front of it). Such field descriptions
are of interest in acoustical imaging and scat-
tering. The model gives a linear systems oriented
interpretation of the focusing process. It can be
applied for arbitrary transducer geometries or for
arbitrary acoustic lens profiles (or time—delays),
providing a useful tool for transducer design. The
method uses FFT routines for time-efficient compu-
ter evaluation, The ability to use arbitrary time
sampling intervals allows flexible inspection of
the diffraction pattern, For radially symmetric
sources the technique allows rapid determination
of the wave boundary locations without requiring
the computation of the field. Computer simulations
of sources, including spherical focused, parabolic
focus and conical focus sources are included.

Introduction

Calculation of the field from pulsed focused
ultrasonic transducers has become important in
recent years [1-7] due to the emphasis on pulsed
modical imaging systems, This paper describes a
technique for the efficient computer computation
of the transient field of a curved wave front,
This wave front can be produced from a focused
transdocer, from & planar array with proper phas-—
ing to produnce the curved wave, or from a wave
that has transited an acoustic lens, It is assumed
that the curved wave passes through an aperture in
a rigid baffle and that the medium is linear,
homogeneous, and lossless, The wave curvature is
Iimited to avoid reflections of the wave from the
opposite side of the transducer. The technique is
based on the spatial impulse technique used by
Stepanishen [8-10] for the solution of fields from
planar sources in baffles, but uses a spatial
frequency domain interpretation of the solution to
give a physical explanation of the propagation as
the application of a time-varying spatial filter.
The mothod is applied to focused concave, conical
and parabolic waves as examples of its applica-
tion.

Basic theory

For a planar rigid-baffled tramsducer, 1T is
known from diffraction theory that the velocity
potential is related to the source velocity dis-
tribution by
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é(x,y,z,t) = c(t)s(x,y)***[5(ct-R)/R] (1)
Iyt

where s(x,y) and t(t) represent the space and
time—-varying parts of the known velocity disturb-
ance al the laput planc and ® indicates convolu-—
tion performed over the indicated variable. The
expression 8(ct~R)/R in Eq. 1 is the Green's func-
tion for free space propagation,

The curvature of the wave can be modelled by
a spatially variable delay d(x,y) from a plane
wave. For a separable velocity disturbance the
field can be written as
8(ct-R)

d(x,y,z.t) = y(t)*s(x,y)6[ct-d(x,y)]**® ~
t xyt R
(2)

where d(x,y) is the spatial offset of the curved
wave front from a plane wave. All one needs for
the propagation technique to be described is a
description of the wave front in terms of either
its relative displacement, d(x,y), or its time
delay, A(x,y).

Because of the difficulty of the spatial
convolutions in Bq. 2, it is convenient to use the
spatial frequency domain. Propagation in this
domain corresponds to a time generalization of the
angular spectrum theory, leading to a2 linear sys-
tems interpretation of the transient diffraction.
A key transform in the development (for an radial-
ly symmetric source) is

B(5(ct-R) /R] = Jolp(c2t?-22)1/21H(ct-2) (3)

where B[] is the Hankel transform operator, and
p=(ff+f2)1/2. Assuming axial symmetry, the
transform of the potential due to a temporal im-
pulse of the form, &[ct-d(r)], can be written from
Egs. 2 and 3 as

H(f,,f,z,t) =
Bls()8lot-d(n)] ¥ Tolp(e?e?-2H) 1/ 21H(ot-2)

4)

The transform on the right side of Eq. 4 can be
ovaluatod [11] aa
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Bis(r)d(ct-d(r)] =
» .
N s(ri)Io(pri)r-
- - . Jo[p(cztz—z2)1/2
t

3d(x)

i=1

r=r; (5)

dr i

where ri'(y) represents the values of r for which
a{r)}-¢t=0. Here, N is the number of r,. (Appendix
A displays expressions for the relative displace-
ment d(r), the r;, and the derivative in the
denominator of Eq. 5 for various wave front con-
figurations.)

The temporal impulse response h(x,y,z,t) is
obtained by inverse transforming Eq. 5 to give

hix,y,z,t) =

» LR
-1 N s(fi)Jo(pri)l'i

B . Tolo(ctti-zt)1/2

3d(zx)

dr

i=1

.
I'X'i

(6)

This equation gives the output field for an axial-
ly symmetric surface velocity when excited by an
impulse in time. The curvature of the field is
contained in the expressioms for r;. (Reference 11
contains equations that are valid for all cases,
not just the axisymmetric.)

The terms of the summation represent the
angular spectrum of & cirgular line source weight~
ed by the function, s(ri). The radius of such a
line varies with time according to the delay law
since r; is a function of time. The resulting
field is just the summation of these line-gener~
ated waves plus the diffraction field that has
been generated by the previous line excitations.
The field computation requires only one convolu~
tion for the computed frequencies and a Hankel
transform.

Again, solutions for am arbitrary time excita-
tion may be obtained by convolution of the impulse
response with the time excitation as in Eq. 2.

Numerical Simulations

Once the geometry of the transducer is kmown,
an elementary calculation leads to the relative
displacement of the wave, d(r)., Then the N zeros
of ct-d{(r) are calculated. These are r;(y). These
solutions are then used in Eq.6. Standard algo-
rithms perform the transforms. The convolution is
done numerically for each spatial frequency. The
results of the comvolution are then inverse trans—
formed to give the resulting valumes of the field.
(It is worth noting that the calculation of the
convolution uses the same products required for
the transform, thereby reducing the computational
complexity of the required operations.)

If the displacement, d{(r}), is & monotonic

function, then the intersection with the plane,
z=ct, will reduce to a closed line and the summa-—
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tion in the equations will reduce to a single
term. This is usually the case for a focused wave,

The following simulations have been investi-
gated using this techmique: circular wave fronts
with concave curvatures of spherical, conical and
paraboloid shapes. The corresponding delays for
each of these shapes is given in Appendix A.

The computations were done on a grid of 64x64
spatial sample points and 50 time samples, The
plots show one spatial dimension vs, time for a
median through the center of the transducer. The
complete three-dimensional calculation consumes
approximately 80 seconds of CPU computer time on
an IBM 3033 mainframe computer. For convenience
the plots bave been normalized to a maximum value
of one. The time axis as well as the width axis
are expressed in terms of one characteristic size,
A, of the transduncer (either half-width or radius,
as appropriate). The time axis has a zero value at
the time when the first wave reaches the observa-
tion line. The focal lemgth f is 10 cm in all
cases. The transducer radius, A, is assumed to be
2.0 cm and the excitation is an impulse (eoxcept
for Fig. 6).

Figures 1-3 show the diffraction pattern from
a circular wave front with a spherical concave
surface. The receiving plane is located at distan—
ces of £/2, f, and 2f from the front edge of the
source. While the solution of Eq. 6 is obtained in
a plane parallel to the excited surface the plots
have been shown with time as the variable to allow
comparison with existing solmtions {2,3]. The
results fit the closed form solution of Refs. 2
and 3 very well. Symmetry is observed when the
field is observed at the focal distance (Fig. 2).
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Figure 1 Spherical concave wave
with a circular cross—section {(Impulse
excitation, A=2.0 cm, f£= 10 cm, 2z=5 cm)

Figures 4 and 5 represent focussed wave
fronts with a conical and parabolic concave sur—
face at the focal plane.
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Figure 2 Spherical concave wave
with a circular cross—section (Impulse
excitation, A=2,0 cm, f= 10 cm, z=10 cm)
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Figure 3 Spherical concave wave

with a circular cross—section (Impulse
excitation, A=2.0 cm, f= 10 cm, z=20 cm)

For a time excitation different than 5(t), the
diffracted wave is a convolution between the im-—
pulse response and the excitation function. Figure
6 show the result of a spherical concave pattern
observed at the focal point. The excitation is a
positive rectangular pulse with a duratiom of
0.04A/c, where A is lateral half-width of the
input wave front. The smoothing effect of the time
domain coavolution is evident along the prop-—
agation axis.

Summary

A general approach for computing the radiated
field of axial symmetry has been developed., Equa-—
tion 6 gives an expression for the impulse res—
ponse of the field. In most practical applications

the expressions leading to the field simplify as
can be seen in Appendix A, providing a useful tool
for transducer design,

The method does not re-
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Figure 4 Conical concave wave

with a circular cross—section (Impulse
excitation, A=2.0 cm, f= 10 cm, z=10 cm)
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Figure 5 Parabolic concave wave
with a circular cross—section (Impulse

excitation, A=2.0 cm, f= 10 cm, 2z=10 cm)

quire any specific sample interval in the time
domain allowing a variable sampling interval as
warranted. Once the impulse—excited response is
known, it can be stored and the transient response
for arbitrary time excitatioms can be computed by
performing the time domain convolution., A 50 point
convolution for all of the 64 spatial data points
requires 1.4 s on an IBM 3033 computer.
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Figure 6 Spherical concave wave
with a circular cross—soction
{(Pnlse excitation, T=0,40A/c, A=2.0 cm,
f=10 cm, 2z=10 cm)

Appendix A

This Appendix gives the relative displace-
ment, d(r), of the curved wave front, the zeros of
ct—d(r), and expressions for the dorivative of
d{r) with respect to r, evaluated at the zeros.
All of the relative displacements are given for
the same depth, d, given by

d = £-(£2-a2)2/2 (A1)

where a is the depth of s concave lens focusing at
a distance, f,

Spherical concave wave front

dr) = (£2-52)1/2_(£2_,2)1/2 (A2)
£} = [a2-c2e-2ct (£2-42)1/211/2 (A3)
[1‘2—<=7't2—2s:t(fz-nz)]‘/z]l/2
4’ (g) = (A4)
! ct+(£2-a2)1/2
Conical concave wave front
2_.2,1/2
—r[f-(f“-a%) 1
a(r) = + £ - (£2-aH)V2 s
a
alf-(£2-a2)1/25¢]
£ = (A6)
i £ (£2-22)1/2
- (£2-42)1/2
a'(r) . " e (AT)
t=ti a

Parabolic concave wave frosnt

221 £-(£2-42)1/2)

d(r) = - (A8)
a2

. [f_(fz_‘z)ilz_“]llz
fy = (A9)
1 f-(fz-lz)llz

’d’(r)| ™
r=x.

1

(2/8) [(£~(£2-a2)1/2) (5= (£2-a2)1/2.¢2)11/2  (a10)
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