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A theoretical model is presented for computing the transient radiated field (potential or pressure)
resulting from a curved surface having an arbitrary velocity distribution. The method is a
generalization of the angular spectrum theory giving the time impulse response for a given shaped
surface. The technique leads to a systems theory interpretation of the radiation and diffraction
effects. General expressions for arbitrary surfaces are given but important simplifications occur
for radially symmetric geometries. For this case, simple expressions for the wave location may be
obtained without requiring solution of the wave. Numerical simulations for common focused
waves are given using computationally efficient FFT algorithms.

PACS numbers: 43.20.Px, 43.20.Rz, 43.20.Bi

LIST OF SYMBOLS

X, Y, Z,r space coordinates

o (x,y,2,1t) velocity potential at position (x, y, z)
at time, ¢

) temporal portion of velocity excita-
tion

s(x, y) spatial portion of velocity excitation

d{x, y) relative delay distance over aperture
surface

4(x,y) relative temporal delay over aperture
surface

f focal length of acoustic lens

L.,L, propagation distance in lens and me-
dium

€1,C, sound velocity in lens and medium

fix,p) lens thickness profile

Xpms Vom location of maximum of f(x, y)

INTRODUCTION

The description of the field produced by a source is very
important due to its use in acoustic techniques that image or
scatter the wave. Depending on the application, the wave
fronts may be planar or curved. For nonplanar wave fronts,
the curvature is usually either concave (focused field) or con-
vex (diffused field). Techniques for generating curved wave
fronts include curved transducers, acoustic lenses, and trav-
eling wave excitation (or, equivalently, phased arrays).

Transient solutions for planar waves and sources have
been investigated in recent years'~'° and different techniques
are now available for computing the field of these sources.
The transient solution from a curved source has received less
attention. A closed form solution for the special case of a
concave spherical radiator has been given in Refs. 11 and 12.
Other solutions appear in Refs. 13-15. Curved transducers
are different to work with and represent a complex transduc-
tion of the electrical signal into an acoustic wave. Many com-
mon sources will cover a planar transducer with a lens or will
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fxfy’P

F,l LF;'[ ]

spatial frequencies (Cartesian and ra-
dial)

direct and inverse 2-D spatial Fourier
transform operators

B[1,B7 '] direct and inverse Hankel transform
operators

G (f.f,2t) spatial Fouriertransformof¢ (x, y,z,7)
for impulse time excitation

x* ¥ ith zero of d(x,y)—ct=0 or
dirf—ct=0

A transducer size (half-width or radius)

N total number of zeros of
dix,y)—ct=0o0rd(r)—ct=0

min][ ] operator that returns the minimum of
a function

max| ] operator that returns the maximum

of a function

use a time-dependent electric excitation applied to segment-
ed transducer arrays to simplify the excitation. The resulting
acoustic field, however, remains identical (or as close as pos-
sible) to the one generated by a curved transducer. Our aim is
to present a theoretical method for computing the expected
transient acoustic field of a baffled radiator with an arbitrary
velocity distribution and an arbitary delay on its surface. The
curved wave fronts can be produced by a lens, an array, or a
slightly curved transducer. For the lens and curved trans-
ducer cases, the restriction to slight curvature implies that
the waves do not reflect off of surfaces on the opposite side of
the transducer. The propagation medium is assumed to be
homogeneous and isotropic in this technique.

l. BASIC THEORY
A. General case

For a planar rigid-baffled transducer, it is known from
diffraction theory that the velocity potential is related to the
source velocity distribution by
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C2 LR FIG. 1. Geometry for propaga-
L2 i tion through acoustic lens ele-
ment.
C1 L1
y
r
¢ (x, y.z,t) = p{t Jslx, y)es*[Slct — R )/R ], (1)
xyt

where s(x, y) and y(t ) represent the space and time-varying
parts of the known velocity disturbance at the input plane, *
indicates convolution performed over the indicated variable,
and

R=(x*+y*+2)" 2)
The expression 8(ct — R )/R in Eq. (1) is the Green’s function
for free-space propagation.

The curvature of the wave can be modeled by a spatially
variable delay from a plane wave. For a lens, this delay re-
sults from the velocity difference between the lens material
and the propagation medium. For a separable velocity dis-
turbance the field can be written as

¢ (x, y:2,t)
=t )*slx, y)Slet — d x, )] *x:f [8ct—R)/R], (3)

where d (x, y) is the thickness of the equivalent lens causing
the delay. (Expressions for this time delay for various emit-
ters are given in Appendix B.)

As an example, if we consider a spherical lens (Fig. 1),
the time delay over the surface at the radial position r, rela-
tive to the time delay encountered at the edge of a lens, is

e @

4 () 4]

where the term in brackets is the delay encountered from the
portion of the wave traveling through a distance L, in the
propagation medium and a distance L, in the lens. The last
term in the expression is the delay of the wave traveling in the
edge of the lens. The velocities of the medium and the lens
material are ¢, and ¢,, respectively. After some algebra, Eq.
(4) becomes

A(r)= [(e; —c)lLg — Ly)]/csc (5)

Because of this delay, the wave front will be displaced
(i.e., curved) by a distance d (r),

d(r)=cA(r). (6)
For the general case, if we consider a lens thickness profile of
the form f{x,y), with a maximum thickness located at

(*,n» Y. )» then the time delay, relative to the delay encoun-
tered at the thickest part, will be

4(x,y) = [(cl—'CZ)/CICZ][f(xnuym)_f(x’y)] M
and the relative wave displacement will be
d(x,y) =cA (x,y). (8)

Although this discussion has been in terms of an acoustic
lens modifying a plane wave, it should be noted that the same
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ideas can be applied to any curved wave front, regardless of
the techniques used for its production. All one needs for the
propagation technique to be described is a description of the
wave front in terms of either its relative displacement, d (x, y),
or its time delay, 4 (x, y).

Because of the symmetry of the § function in Eq. (3)and
for efficiency of computation, it is convenient to use the
(fx,f,»2:t) space.'® Propagation in this space corresponds to
a time generalization of the angular spectrum theory, lead-
ing to a linear systems interpretation of the transient diffrac-
tion. The diffraction is equivalent to a time varying spatial
filter acting on the source spatial spectrum.'®

Recall that

]-zglﬁ(x-x/} (9)

where x; are the zeros of f(x). Using this expansion we have
an expression for the Green’s function portion of Eq. (1),

Slct —R) _ 8[r—(c*?—24)"?]
R R[> =2 et]’
where r = (x? + y?)!/2. Taking the Fourier—Bessel transform
(i.e., the Fourier transform of a radially symmetric field) will

lead to an expression for the transform of the Green’s func-
tion given by

X““X

(10)

Slet —R)] _ [ 6[r—(ct?—2)"?]
B[ ]_B[R [(c*2 — 22)%/ct | 1
=J[plct? =22 H(ct —2), (12)

where B [-] is the Fourier—Bessel (or Hankel) transform oper-
atorandp = (f2 + f2)"/. The zero-order Bessel function J,
is the transfer function of the diffraction process. It shows
how the high spatial frequencies are reduced at any z plane as
time increases. The transform of the potential due to an im-
pulse of the form, 8[ct — d (x, )], can be written from Egs. (3)

and (12) as
G(fedyzt) =F,, [s(x, y)blct — d (x, y))]

X *Jy[ plcit? — 22)V?1H (ct — z), (13)
where F, | [-] is the two-dimensional spatial transform oper-

ator. Extending Eq. (9) to the two-dimensional space, we
have

F,, [s(x, ,V)5(Cf —d(x, )]

- [} 2 (oo fbs)

i=1

. Xexp{ —i[foxMy) + 1, ¥]]dy (14)
N ad [x*( y),
=5 5, (o / |52 ))
xexp[ — ()] | (13)

where x¥(y) represents the values of x for which
d (x, y) — ct = 0 for fixed y. Here, N is the number of zeros.
[Appendix B displays expressions for the relative displace-
ment d (x, y), the zeros of d (x, y) — ct, and the derivative in
the denominator of Eq. (15) for various wave-front configu-
rations.] It is worth noting that Eq. (13) is the time-depen-
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dent spectrum of a line source affected by a varying ampli-
tude. This line source is determined by the intersection of the
d (x, y) surface with a plane paraliel to the (x, y,0) plane at a
location z = ¢t. As time increases, the size (and shape) will
change. Since the two-dimensional transform is now along a
line, the two-dimensional Fourier transform becomes a one-
dimensional transform. Equations {14) and (15) remain the
same for either a convex or a concave surface delay d (x, y).
The formulation of Egs. (13) and (15) is valid, generally, for
the emission from any curved surface as well as transmission
through a thin lens.

Thefield, g{x, y,z,t ), is obtained by inverse transforming

Eq. {13} to give

8lx, y.z,t)

-ra [, by |t
xexp[—mxr(y)]]on[p(thz—f)‘”]]. (16)

This equation gives the output field for an arbitrary shape of
surface velocity when excited by an impulse in time. The
curvature of the field is contained in the expression for x¥*.

For an arbitrary time function we must convolve (over
time) the result of Eq. (16) with the time dependent excitation
as in Eq. (1). In most sources, the delay function, 4 (x, y), is
separable in x and y dependence (or dependent on only one
variable). The functions of Appendix B illustrate this point.
These conditions make the F,[-] operation easier to com-
pute. Usually a time convolution and a two-dimensional
Fourier transform over the calculated frequencies will be the
only computations required. With the use of FFT routines
the computation is very efficient and rapid, allowing the ve-
locity potential to be calculated over the entire xy plane.

Equation (16) represents the velocity potential for an
impulse temporal excitation when the velocity over the emit-
ting surface is known. From the potential, one obtains the
pressure, P(x, y,z,t), from the relation

ad (x, y,z,t
Pix,p.2t) =,ooﬂ‘5-f—’z——’ , (17)

where p, is the density of the medium. From Eq. (16) we find
an expression for the pressure with an impulse time excita-
tion as

P(x, yz,t)
___popx;l[Fy é (s[x:-"(y),y]/ru[):#‘)

. pc’t
Xexp[ —lfxx?'(J’)]]jm

XJ,[ plc?t? —zz)”z]]. (18)

Hence either the potential or pressure are easily and effi-
ciently computed with this technique. It is worth noting that
as ct approaches z, the function J,[ p(c*?—z%)"?}/
(c*? — z%)!/2 approaches a Dirac delta function.
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B. Axisymmetric delay and displacement

A large fraction of transducers are of axisymmetric ge-
ometry, therefore, the delay and the displacement of the
transducer are radial functions. For such symmetry the one-
dimensional Hankel transform can be substituted for the
two-dimensional spatial transform. Then Eqs. (13) and (16)
can be written as

$(pzt)=B(s(rnblct —d(r)])

X *Jo[p(c*t? — 2)V/?1H (ct — 2) (19)
and
sirze) =8| 3 (serwprtir/ |22 )
xedol plett? — 2171, (20

respectively, where B [-] is the Hankel transform operator
and ¥ denotes the zeros of ct — d (7).

The terms of the summation represent the angular spec-
trum of a circular line source weighted by the function, s(r*).
The radius of such a line varies with time according to the
delay law since 7* is a function of time. The resulting field is
just the summation of these line-generated waves plus the
diffraction field that has been generated by the previous line
excitations. Once again, the field computation requires only
one convolution for the computed frequencies and a Hankel
transform.*®

A simpler version of Eq. (20) may be found by inverting
the integration order (see Appendix A). This formulation
imposes conditions on the radial distance and consequently
defines the domain where the waves will propagate.

Again, field solutions for an arbitrary time excitation
may be obtained by convolution of the impulse response with
the time excitation.

li. NUMERICAL SIMULATIONS

Once the geometry of the transducer is known, an ele-
mentary calculation leads to the relative displacement of the
wave, d (x, y). Then the N zeros of ct — d (x, y)are calculated.
These are x¥( y) or 7*. These solutions are then used in Egs.
(16) or (20). Standard FFT algorithms perform the trans-
forms. The convolution is done numerically for each spatial
frequency. The results of the convolution are then inversely
transformed to give the resulting values of the field. (It is
worth noting that the calculation of the convolution uses the
same products required for the transform, thereby reducing
the computational complexity of the required operations.)

If the displacement, d (x, y), is a monotonic function,
then the intersection with the plane, z = ct, will reduce to a
closed line and the summation in the equations will reduce to
a single term. This is usually the case for a focused wave.

The main features of the method are that the use of the
FFT allows efficient calculations with low computer times
and that the method does not require any specific sampling
period in time. Arbitrary regions of time, therefore, can be
investigated with smaller increments of time than other re-
gions that require less temporal resolution.
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FIG. 2. Spherical concave wave with a circular cross section (impulse exci-
tation, 4 =2.0cm, f= 10cm, z =5 cm).

The following simulations have been investigated using
this technique:

(1) a circular emitter with a spherical shaped concave
delay,

(2) a circular emitter with a conical concave shaped de-
lay,

(3) a circular emitter with a parabolic concave shaped
delay,

(4) a circular emitter with a spherical convex shaped
delay, and

(5) a square emitter with a cylindrical delay over its sur-
face.
The corresponding delays for each of these shapes is given in
Appendix B.

o

0.8

TENT 1AL
0.6

NELOCITY PO
0.4

0.2

FIG. 3. Spherical concave wave with a circular cross section (impulse exci-
tation, 4 =2.0cm, f= 10 cm, z = 10 cm).
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FIG. 4. Spherical concave wave with a circular cross section (impulse exci-
tation, 4 = 2.0 cm, f= 10 cm, z = 20 cm).

The computations were done on a grid of 64 X 64 spatial
sample points and 50 time samples. The plots show one spa-
tial dimension versus time for a median through the center of
the transducer. The complete three-dimensional calculation
consumes approximately 80 s of CPU computer time on an
IBM 3033 mainframe computer. For convenience the plots
have been normalized to a maximum value of one. The time
axis as well as the width axis are expressed in terms of one
characteristic size 4 of the transducer (either half-width or
radius, as appropriate). The time axis has a zero value at the
time when the first wave reaches the observation line. For
spherical, conical, and parabolic delays the field is presented
at positions located at distances of f/2, f, and 2f from the
emitter, where f is the focal length of the lens (assumed 10
cm in all of the simulations). The transducer radius 4 is as-

0.
Y

0.6

\

A

VELOCITY POTENTIAL
0.4

A

0.2

9.0
3

FIG. 5. Conical concave wave with a circular cross section (impulse excita-
tion,4 =2.0cm, f=10cm, z= 5 cm).
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1

0.6 0.8
\ I
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0.4

0.2
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i

FIG. 6. Conical concave wave with a circular cross section (impulse excita-
tion, 4 =2.0cm, f= 10 cm, z= 10 cm).

sumed to be 2.0 cm and the excitation is an impulse (except
for Figs. 16 and 17 as will be discussed).

Figures 2—4 show the diffraction pattern from a circular
wave front with a spherical concave surface. While the solu-
tion of Eq. (20) is obtained in a plane parallel to the excited
surface the plots have been shown with time as the variable
to allow comparison with existing solutions.'"'? The results
fit the closed form solution of Refs. 11 and 12 very well.
Symmetry is observed when the field is observed at the focal
distance (Fig. 3). From a Dirac function on the time axis, the
field becomes smoother as the radial distance increases. In
front of the focal plane (Fig. 2) the field reaches a maximum
early on the time axis and then decreases in value with in-
creasing time. When the field is observed behind the focal

1

0.8
L

0.6
1

A,

VELOCITY POTENTIAL
0.4

0.2

5.

9.0

FIG. 7. Conical concave wave with a circular cross section {impulse excita-
tion, 4 = 2.0 cm, f= 10 cm, z = 20 cm).
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0.6

NELOCITY POTENTIAL
0.4

0.2

2.0

FIG. 8. Parabolic concave wave with a circular cross section (impulse exci-
tation, 4 = 2.0 cm, f= 10 cm, z = 5 cm).

plane (Fig. 4), the field rises slowly to a maximum then ab-
ruptly falls to zero value, resulting in a so-called “time inver-
sion” from the case located in the front focal plane. Along a
line of constant time the field is relatively narrow in space
indicating that the wave packet stays relatively close togeth-
er for this curvature.

Figures 5-7 represent a wave front with a conical con-
cave surface. The field evolves along the propagation axis
but keeps the same features both in front of and behind the
focal plane. As with the spherical transducer, there is a “time
inversion” in the wave between the waves before and after
the focal plane. In front of the focal plane the maximum is
reached shortly after the first waves reach the observation
plane. The maximum occurs sooner after the first waves

o

-

0.8
\ )

0.6

1

0.4

A

NELOCITY POTENTIAL

0.2

0.0

FIG. 9. Parabolic concave wave with a circular cross section (impulse exci-
tation, 4 = 2.0 cm, f= 10 cm, z = 10 cm).
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Q.2

Y

9.0
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FIG. 10. Parabolic concave wave with a circular cross section (impulse exci-
tation, 4 = 2.0 cm, f= 10 cm, z = 20 cm).

have reached the observation plane than in the case of a
spherical wave front. This result is in good agreement with
Ref. 17. Another characteristic is that the wave stays con-
centrated around the axis for all values of distance, resulting
in large depth of focus for this wave. :

For a parabolic shaped wave (Figs. 8-10), the diffrac-
tion pattern has a shape very similar to that of the spherical
wave, as might be expected since the fields are quite similar.
The effects of the differences would be expected only at very
large propagation distances or for very short focal lengths.

Figure 11 represents the radiation pattern of a convex
spherical wave in front of the back focal plane. This lens
tends to diverge the wave as expected.

3

0.8
1

0.6

1

NELOCITY POTENTIAL
0.4

9.2
i

0.0
\ .

FIG. 11. Spherical convex wave with a circular cross section (impulse exci-
tation, 4 = 2.0cm, f= 10cm, z = 5 cm)}.
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0.2
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FIG. 12. Cylindrical concave wave over a square piston (impulse excitation,
A=20cm, f=10cm,z=5cm).

In Fig. 12 the field for a square transducer with a cylin-
drical lens is presented. The field is observed along a median
plane oriented perpendicular to the cylindrical axis. For
small values of time, the pattern looks like that obtained with
aspherical lens but the field decreases more smoothly as time
increases. The field lasts longer than any of the axisymmetric
cases because of the longer propagation times for the waves
from the nonfocused dimension.

Ill. WAVE PROPAGATION BOUNDARIES

Sometimes, knowing the location of the wave distur-
bance is useful, even without a calculation of the details of
the wave front. It is shown in Appendix A that, for an axi-
symmetric case, the field can be obtained directly without
transforms. The solution derived in Appendix A imposes the
constraint that the field will exist only for those values of
radial distance 7 that fall in the range '

2.0 3
1 —

1.0

RADIAL DISTANCE (R/A)
L

0.0

TIME (CxT/A)

FIG. 13. Wave support at z =5 cm for a circular piston source (impulse
excitation, 4 = 2.0 cm, f = 10 cm). (The single-dot region is for a spherical
convex wave and the double-dot region is for a spherical concave wave. The
solid-lined region is for a conical concave wave and the triple-lined region is
for a parabolic concave wave.)
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2.0 3.0

RADIAL DISTANCE (R/A)
1.0

0.0

0.0 0.1 0.2 0.3 0.4 0.5
TIME (CxT/A)

FIG. 14. Wave support at z = 10 cm for a circular piston source (impulse
excitation, 4 = 2.0 cm, f= 10 cm). (The single-dot region is for a spherical
convex wave and the double-dot region is for a spherical concave wave. The
solid-lined region is for a conical concave wave and the triple-lined region is
for a parabolic concave wave.)

min[(c*¢* —2°)'? —r,(t ~ £)]
<r<max[(?2 —22)2 +r(t—£)], (21)

where the min and max operators and the variable £ are
discussed in Appendix A. This allowable range of values of 7
provides a simple way to “locate” the wave. In fact, it defines
the edges of the wave envelope.

Figures 13-15 show the evolution of the wave domain
at positions located distances of f/2, £, and 2f, respectively.
On these plots the cross hatching indicates the extent of the
wave. The light density dots represent the spherical convex
wave; the double density dotted region is the spherical con-
cave wave. The solid-lined region is the wave domain for the
conical concave wave and the triple-lined region is for the
parabolic concave wave. In all cases the spreading of the
wave appears clearly, becoming wider when the observation
point is further from the source. It is interesting to note that
the parabolic wave and the spherical wave have the same
wave domain. The conical wave has the same upper bound-
ary as the former two cases, but the lower boundary is quite
different. For the long-time behavior, all domains have the
same lower boundary. For the /2 and 2f locations, the field
has an extended region of nonzero values on the propagation

RABIAL DISTANCE (R/A)

0.0 0.1 0.2 0.3 0.4
TIME (CxT/A}

FIG. 15. Wave support at z = 20 cm for a circular piston source (impulse
excitation, 4 = 2.0 cm, f = 10 cm). (The single-dot region is for a spherical
convex wave and the double-dot region is for a spherical concave wave. The
solid-lined region is for a conical concave wave and the triple-lined region is
for a parabolic concave wave.)

1570 J. Acoust. Soc. Am., Vol. 76, No. 5, November 1984

0.e

0.6

I

VYELOCITY POTENTIAL
0.4

0.2

i

FIG. 16. Spherical concave wave with a circular cross section {pulse excita-
tion, T=0.04 4 /c, A=2.0cm, f= 10 cm, z= 10 cm).

axis, whereas at z = f this region is reduced to a length that
can be as small as a point (for a spherical lens).

IV. ARBITRARY TIME EXCITATION

For a time excitation different than 8( ), the diffracted
wave is a convolution between the impulse response and the
excitation function. Figures 16 and 17 show the result of two
kinds of excitation on a spherical concave pattern observed
at the focal point. The first excitation (Fig. 16} is a positive
rectangular pulse with a duration of 0.04 4 /c, where 4 is
lateral half-width of the input wave front. The smoothing
effect of the time domain convolution is evident along the
propagation axis. The signal lasts longer and the amplitude
distribution is changed. The second excitation (Fig. 17) is a

]

I 1

1

A Iy

Y

NELOCITY POTENTIAL
-1.80.8-0.6-0.4-0,2 0.0 0.2 0.4 0.6 0.8 1.0

Iy

b

FIG. 17. Spherical concave wave with a circular cross section [resonant
pulse excitation (i.e., one cycle of square wave), T =0.04 4 /c, A = 2.0 cm,
f=10cm, z=10cm].
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FIG. 18. Conical concave wave with a circular cross section (impulse excita-
tion, 4 =2.0cm, f= 10 cm, z= 10 cm).

resonant pulse (i.e., a one-cycle square wave) of the same
overall duration. Here the differentiating effect of the oppo-
site parts of the wave are evident but the peak observed with
the impulse drive has been smoothed in this case.

V. PRESSURE COMPUTATION

The pressure for an impulse temporal excitation can be
obtained either by applying Eq. (18) in a straightforward
manner or by differentiating the velocity potential obtained
by using Eq. (16). The differentiation can be accomplished
numerically by using existing numerical techniques or by
convolving the velocity potential with the derivative of §(¢ ) as
approximated by two successive points with opposite sign.
The latter method has been used to provide the pressure at
the z = fplane for a conical wave as shown in Fig. 18. Con-
sistent with this convolution, it is observed that the high
temporal frequencies have been enhanced by this operation.I

2

bi=1

A& ) 262 21/2
¢(’>Z,t)=—£ ( s(: Mol pm: )i ol plc’E 222

(%)<=,

where b is defined by
b=max[z/c, t — 7], (A3)

with max [a,b ] being an operator that returns the larger of
the arguments, 7 begin the maximum delay of the curved
wave front, and 7, is a variable given by

7 =r{t—§) (Ad)
Inverting the integration order gives
¢ (rzt)

LT
—f,, 2, ()] =,

Xf’ ol PNl Pl ™ — 22104 prp dp dE. (A5)
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de )Jo< pr)p dp,

VI. SUMMARY

A general approach for computing the radiated field of
an arbitrary surface has been developed. Equations (16) and
(20) give expressions for the fields. In most practical applica-
tions the expressions leading to the field simplify as can be
seen in Appendix B, providing a useful tool for transducer
design. For the important class of radially symmetric trans-
ducers, an expression for the radiated wave location in time
and space may be developed using elementary expressions as
in Eq. (21). The method does not require any specific sample
interval in the time domain allowing a variable sampling
interval as warranted. Once the impulse-excited response is
known, it can be stored and the transient response for arbi-
trary time excitations can be computed by performing the
time domain convolution. A 50-point convolution for all of
the 64 spatial data points requires 1.4 s on an IBM 3033
computer.
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APPENDIX A

In this Appendix an alternative form to Eq. (20) will be
derived that produces an expression for the velocity poten-
tial that does not use any transform operations. A major
secondary benefit of this derivation is an expression for the
spatial domain of the wave that can be used for calculating
the extent of the wave.

From Eq. (20 if follows that

& (rz,t)
—B—‘[ N rEs(r¥o( prY)

- «J 2,2 _ 22|
2 |d'(r))r=’,[, ,o[P(Ct z°) 4]

(A1)
Expressing the convolution as an integral over £ gives

(A2)

|
The second integral is evaluated by the following identity'®:

[ sotapterreoip ao
= 1 )
27 [02 __ (b _ c)2]1/2[(b + C)2 _ 02]1/2
if b —cl<a<(b+c),
=0 otherwise. (A6)

Hence,

f:’ ol P1Mol ple’s* — %)) prip dp
={[rz_(a—ni)Z]l/Z[(a+77i)2_r2]l/2}_1’ (A7)
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where a represents (c>£ 2 — z°)!/% and r must meet the condi-
tion

la — | <r<a+m. (A8)
Substituting the closed form solution in the previous expres-
sion yields

#(rzr)
X sy
‘,;L ld ') =,
X{Z’ﬂ'[rz a—n)z]l/z[(a+,7 r2]l/2}—ld§
(A9)
where
la — ;| <r<a+mn;. (A10)

This last constraint is very useful since it enables us to deter-
mine the domain where the wave will exist. It gives the wave
location without any necessity for the calculation of the
wave. The bounds of the domain are given by

= max{a + 7;) (Al1)

and

r = min(la —7,]), (A12)
where the max and min operators are now interpreted as
returning the maximum and minimum values of the function
of £ in the argument where £ ranges from b to ¢.

APPENDIX B

This Appendix gives the relative displacement d (r} of

the curved wave front, the zeros of ¢t — d (r), and expressions
for the derivative of d (r) with respect to 7, evaluated at the
zeros previously given. All of the relative displacements are
given for the same depth d given by

d=f—(f*—a)'"? (B1)
where a is the depth of a concave lens focusing at a distance /.
Spherical concave wave front

din= (=2 —(f*=a)"? (B2)
ro=[a? —c*? = 2ct(f*—a?)"?]"?, (B3)
, _ @ =t —2et(f*—a?)'?]V?
|d (r)|r=r,-_ ct+(f2—a2)”2 (B4)
Spherical convex wave front
dir)=f—(f*~r)"3 (B5)
— (zctf‘_ 62t2)1/2 (B6)
|d (A=, = Qetf = 2/ f~ct). (B7)
Conical concave wave front
d(f) N r[.f_ (f2 _ 02)1/2] +f— (fz _02)1/2,
‘ (B8)
, _alf=(fP=a)—c] (B9)
4 f_(f2__a2)1/2
d' (A, =, = If— (f*—a*'"*1/a. (B10)
Parabolic concave wave front
1/2
d= -V p e ayr,
(B11)
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(L= =) =\
r; —-a( ) ) , (B12)
d ()], —,, = 2/a){[f— (f* —a®''*]
X[f=(f?=a)"?—ect]}V2 (B13)

Square transducer with cylindrical lens

The following applies for a square transducer that is of
length a on a side:

d (%o po) = [(f* = X5)"> — (f* = @) *]17 (yo/a),  (B14)
Xy = [@® — ¢2? — 2ct (f? — a?)V/?]"/2 (B15)
ad (xo, yo)
axo Xq = Xoj
B [02—C2t2—2ct(f2—02)1/2]1/2 B16
- ct + (f2 _ az)x/z ( )
Equation (8) simplifies in this case to
ny [s(x, y)a(Ct —d (x’ y))]
ot — eSSl SR 6] gy
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